Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler
نویسندگان
چکیده
Latent class analysis is used to perform model based clustering formultivariate categorical responses. Selection of the variables most relevant for clustering is an important task which can affect the quality of clustering considerably. This work considers a Bayesian approach for selecting the number of clusters and the best clustering variables. The main idea is to reformulate the problem of group and variable selection as a probabilistically driven search over a large discrete space usingMarkov chainMonteCarlo (MCMC)methods. Both selection tasks are carried out simultaneously using an MCMC approach based on a collapsed Gibbs sampling method, whereby several model parameters are integrated from the model, substantially improving computational performance. Post-hoc procedures for parameter anduncertainty estimation are outlined. The approach is tested on simulated and real data .
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملLearning Deep Generative Models with Doubly Stochastic MCMC
We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of deep generative models in the collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a minibatch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over latent variables via a Gibbs sample...
متن کاملBayesian variable selection for latent class models.
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search G...
متن کاملBayesian Factorization Machines
This work presents simple and fast structured Bayesian learning for matrix and tensor factorization models. An unblocked Gibbs sampler is proposed for factorization machines (FM) which are a general class of latent variable models subsuming matrix, tensor and many other factorization models. We empirically show on the large Netflix challenge dataset that Bayesian FM are fast, scalable and more ...
متن کاملBayesian Analysis of A Model with Binary Selectivity and Ordered Outcomes
This paper presents a Bayesian analysis to estimate parameters and latent variables in an ordered censored sample selection model. After reparameterization which greatly improves convergence rate and uses specially designed priors, efficient Gibbs sampler is set up with conjugate conditional posteriors. Then a numerical study is conducted to evaluate the convergence rate of MCMC estimates, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 26 شماره
صفحات -
تاریخ انتشار 2016